3 research outputs found

    A Prioritized Multi-Channel Multi-Time slot MAC Protocol For Large-Scale Wireless Sensor Networks

    Get PDF
    International audienceThis paper addresses a new prioritized multichannel multi-time slot MAC protocol (PMCMTP) for large-scale WSNs especially for Ultra-Wide Band (UWB) based networks. To reduce the complexity of resource sharing, the global network is composed of a set of Personal Area Networks (PANs) or cells. According to available resource and PANs duty cycle, PMCMTP can dynamically assign several data channels per PAN and efficiently allocate time slots to each PAN's members. This significantly decreases delay and increases throughput. Through some simulations, we evaluate the performance of the proposed protocol. The results show that PMCMTP ensures an efficient and fair channels allocation between cells permitting, on the one hand, an enhancement of quality-of-service inside each PAN and, on the other hand, a maximization of channel utility

    A Three-Tiered Architecture for Large-Scale Wireless Hospital Sensor Networks

    Get PDF
    International audienceThe Utra Wide Band physical layer specified by the IEEE 802.15.4a standard [1] presents numerous advantages comparing with its original IEEE 802.15.4 standard, namely high accuracy positioning ability, high data rate up to 27 mbps, extended communication range, low power consumption and low complexity. Actually, many research and development activities focus on the design of UWB sensor nodes entities. However nodes interactions or network configuration are neglected. For that, we propose in this paper to investigate the use of UWB for large scale Wireless Hospital Sensor Networks (WHSNs) to benefit from the advantages offered by the UWB technology. This evolving networking paradigm promises to revolutionize healthcare by allowing inexpensive, non-invasive, pervasive and ubiquitous, ambulatory health monitoring. We present the design of new system architecture, based on IEEE 802.15.4a compliant sensors, suitable for health monitoring application in high dense hospital environment. The proposed system architecture is intended to support large-scale deployment and to improve the network performance in terms of energy efficiency, real-time guarantees and Quality-of-Service (QoS)

    Pmcmtp's Implementation (in nesC/TinyOS2.x) and Testbed for Its Operation Validation

    Get PDF
    International audiencePMCMTP is a Prioritized Multi-Channel Multi- Time slot MAC protocol that the authors have proposed for allowing to simultaneous use of several frequency channels. This protocol is designed for UWB of IEEE802.15.4a but it can also be used over IEEE802.15.4. In this paper, we design and implement a testbed of this protocol to demonstrate its practical implementability. Due to the unavailability of UWB transceiver, the testbed has been performed using classic 2.4GHz WSN transceivers. To reduce the complexity of resource sharing, the global network is composed of a set of Personal Area Networks (PANs) or cells. So, the PMCMTPs experiments are performed for a single PAN and two PANs
    corecore